首页 | 本学科首页   官方微博 | 高级检索  
     


Illumination‐driven Mesh Reduction for Accelerating Light Transport Simulations
Authors:Andreas Reich  Tobias Günther  Thorsten Grosch
Affiliation:1. Computational Visualistics, University of Magdeburg, Germany;2. Visual Computing, University of Magdeburg, Germany
Abstract:Progressive light transport simulations aspire a physically‐based, consistent rendering to obtain visually appealing illumination effects, depth and realism. Thereby, the handling of large scenes is a difficult problem, as in typical scene subdivision approaches the parallel processing requires frequent synchronization due to the bouncing of light throughout the scene. In practice, however, only few object parts noticeably contribute to the radiance observable in the image, whereas large areas play only a minor role. In fact, a mesh simplification of the latter can go unnoticed by the human eye. This particular importance to the visible radiance in the image calls for an output‐sensitive mesh reduction that allows to render originally out‐of‐core scenes on a single machine without swapping of memory. Thus, in this paper, we present a preprocessing step that reduces the scene size under the constraint of radiance preservation with focus on high‐frequency effects such as caustics. For this, we perform a small number of preliminary light transport simulation iterations. Thereby, we identify mesh parts that contribute significantly to the visible radiance in the scene, and which we thus preserve during mesh reduction.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号