首页 | 本学科首页   官方微博 | 高级检索  
     


High temperature phase chemistries and solidification mode prediction in nitrogen-strengthened austenitic stainless steels
Authors:Ann M. Ritter  Michael F. Henry  Warren F. Savage
Affiliation:(1) General Electric Corporate Research and Development, 12301 Schenectady, NY;(2) Welding Research, Department of Materials Engineering, Rensselaer Polytechnic Institute, 12180 Troy, NY
Abstract:Nitronic 50 and Nitronic 50W, two nitrogen-strengthened stainless steels, were heat treated over a wide range of temperatures, and the compositions of the ferrite and austenite at each temperature were measured with analytical electron microscopy techniques. The compositional data were used to generate the (γ + δ phase field on a 58 pct Fe vertical section. Volume fractions of ferrite and austenite were calculated from phase chemistries and compared with volume fractions determined from optical micrographs. Weld solidification modes were predicted by reference to the Cr and Ni contents of each alloy, and the results were compared with predictions based on the ratios of calculated Cr and Ni equivalents for the alloys. Nitronic 50, which contained ferrite and austenite at the solidus temperature of 1370 °C, solidified through the eutectic triangle, and the weld microstructure was similar to that of austenitic-ferritic solidification. Nitronic 50W was totally ferritic at 1340 °C and solidified as primary delta ferrite. During heat treatments, Nitronic 50 and Nitronic 50W precipitated secondary phases, notably Z-phase (NbCrN), sigma phase, and stringered phases rich in Mn and Cr.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号