首页 | 本学科首页   官方微博 | 高级检索  
     

考虑天气类型和相似日的IWPA-LSSVM光伏发电功率预测
引用本文:徐一伦,张彬桥,黄婧,谢枭,王若昕,沈丹青,何丽娜,杨凯帆. 考虑天气类型和相似日的IWPA-LSSVM光伏发电功率预测[J]. 中国电力, 2023, 56(2): 143-149. DOI: 10.11930/j.issn.1004-9649.202108059
作者姓名:徐一伦  张彬桥  黄婧  谢枭  王若昕  沈丹青  何丽娜  杨凯帆
作者单位:1. 三峡大学 电气与新能源学院,湖北 宜昌 443002;2. 国网湖北省电力有限公司荆门供电公司,湖北 荆门 448000
基金项目:国家自然科学青年基金资助项目(52007102)
摘    要:为了提高光伏发电功率预测精度,根据不同天气类型下光伏输出功率特点,确定光伏发电功率预测模型的输入量。针对狼群算法(wolf pack algorithm,WPA)缺陷,对狼群游走位置和奔袭步长进行改进,得到改进狼群算法(improved wolf pack algorithm,IWPA),并通过IWPA对最小二乘支持向量机(least squares support vector machine,lSSVM)进行优化,建立了考虑天气类型和相似日的IWPA-LSSVM光伏发电功率预测模型。采用不同天气类型下的光伏发电功率数据进行仿真,结果表明:无论是晴天、多云还是阴雨天气,所提方法预测精度更高,回归拟合时的误差波动更小。

关 键 词:天气类型  相似日  光伏发电功率  最小二乘支持向量机
收稿时间:2021-08-19

Forecast of Photovoltaic Power Based on IWPA-LSSVM Considering Weather Types and Similar Days
XU Yilun,ZHANG Binqiao,HUANG Jing,XIE Xiao,WANG Ruoxin,SHEN Danqing,HE Lina,YANG Kaifan. Forecast of Photovoltaic Power Based on IWPA-LSSVM Considering Weather Types and Similar Days[J]. Electric Power, 2023, 56(2): 143-149. DOI: 10.11930/j.issn.1004-9649.202108059
Authors:XU Yilun  ZHANG Binqiao  HUANG Jing  XIE Xiao  WANG Ruoxin  SHEN Danqing  HE Lina  YANG Kaifan
Affiliation:1. College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China;2. Jingmen Power Supply Company, State Grid Hubei Electric Power Co., Ltd., Jingmen 448000, China
Abstract:In order to improve the prediction accuracy of photovoltaic power, the input of the photovoltaic power prediction model is determined according to the characteristics of photovoltaic output power under different weather types. Aiming at the defects of the wolf pack algorithm (WPA), an improved wolf pack algorithm (IWPA) was obtained by improving the walking position and running step of the wolf pack. The least squares support vector machine (lSSVM) was optimized by IWPA, and an IWPA-LSSVM based photovoltaic power prediction model was established considering weather types and similar days. The photovoltaic power generation data under different weather types were used for simulation, and the simulation results show that the proposed method has a higher prediction accuracy and the error fluctuation of regression fitting is smaller whether the weather is sunny, cloudy or rainy.
Keywords:weather type  similar day  photovoltaic power  least squares support vector machine  
点击此处可从《中国电力》浏览原始摘要信息
点击此处可从《中国电力》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号