首页 | 本学科首页   官方微博 | 高级检索  
     

基于NARMAX模型的阀控非对称缸神经网络预测控制
引用本文:袁磊,蒋刚,郝兴安,刘思颂,陈清平,徐文刚. 基于NARMAX模型的阀控非对称缸神经网络预测控制[J]. 液压与气动, 2023, 0(1): 86-93. DOI: 10.11832/j.issn.1000-4858.2023.01.010
作者姓名:袁磊  蒋刚  郝兴安  刘思颂  陈清平  徐文刚
作者单位:1.成都理工大学 机电工程学院, 四川 成都 610059; 2.成都陵川特种工业有限责任公司, 四川 成都 610110
基金项目:四川省重大科技专项(2020ZDZX0019);四川省科技计划重点研发项目(2021YFG0075,2021YFG0076)
摘    要:针对非对称缸位置跟踪控制精度较差,提出了一种基于非线性自回归平均滑动离散模型(NARMAX)和量子粒子群算法的神经网络预测控制策略(QPSO-NNMPC)。利用NARMAX模型表示阀控非对称缸的动态模型,使用粒子群算法优化BP神经网络(PSO-BP)对阀控非对称缸系统在线预测,使用量子粒子群算法(QPSO)对目标函数非线性优化。仿真结果表明,在不同频率期望信号与变干扰力情况下,该控制策略具有良好的跟踪效果和鲁棒性。

关 键 词:阀控非对称缸  BP神经网络  粒子群算法  量子粒子群算法  位置跟踪控制
收稿时间:2022-05-30

Neural Network Predictive Control of Valve-controlled Asymmetric Cylinder Based on NARMAX Model
YUAN Lei,JIANG Gang,HAO Xing-an,LIU Si-song,CHEN Qing-ping,XU Wen-gang. Neural Network Predictive Control of Valve-controlled Asymmetric Cylinder Based on NARMAX Model[J]. Chinese Hydraulics & Pneumatics, 2023, 0(1): 86-93. DOI: 10.11832/j.issn.1000-4858.2023.01.010
Authors:YUAN Lei  JIANG Gang  HAO Xing-an  LIU Si-song  CHEN Qing-ping  XU Wen-gang
Affiliation:1. School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059; 2. Chengdu Lingchuan Special Industry Co., Ltd., Chengdu, Sichuan 610110
Abstract:Aiming at the poor accuracy of asymmetric cylinder position tracking control, a neural network predictive control strategy (QPSO-NNMPC) based on nonlinear autoregressive mean-slip discrete model (NARMAX) and quantum particle swarm algorithm was proposed. The NARMAX model is used to represent the dynamic model of the valve-controlled asymmetric cylinder, the particle swarm optimization BP neural network (PSO-BP) is used to predict the valve-controlled asymmetric cylinder system online, and the quantum particle swarm optimization (QPSO) is used to optimize the objective function nonlinearly. The simulation results show that the control strategy has good tracking effect and robustness under the condition of different frequency desired signal and variable interference force.
Keywords:valve-controlled symmetrical cylinder  BP neural network  particle swarm optimization  quantum particle swarm optimization  position tracking control  
点击此处可从《液压与气动》浏览原始摘要信息
点击此处可从《液压与气动》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号