首页 | 本学科首页   官方微博 | 高级检索  
     

衍射光学元件车削误差控制技术
引用本文:黄岳田,范斌,李世杰,梁海锋,蔡长龙,刘卫国.衍射光学元件车削误差控制技术[J].红外与激光工程,2023,52(3):20220504-1-20220504-9.
作者姓名:黄岳田  范斌  李世杰  梁海锋  蔡长龙  刘卫国
作者单位:1.西安工业大学 光电工程学院 陕西省薄膜技术与光学检测重点实验室,陕西 西安 710021
基金项目:陕西省科技厅项目(2022GY-222);陕西省科技厅产业链项目(2021ZDGY12-05)
摘    要:衍射光学元件在光学系统中的应用越来越广泛,对衍射结构的加工质量提出了更高的要求。单点金刚石车削可直接加工出高精度衍射微结构表面,但衍射结构的位置误差和表面质量对其光学性能有较大影响。为了提高衍射光学元件的性能,需要精确控制其车削误差。基于此,分析了影响衍射元件加工质量的因素,建立了揭示位置误差、衍射面形状和刀具半径之间的关系的数学模型,揭示了衍射带位置精度影响规律。通过补偿加工提升基底表面质量来提高衍射曲面面形精度。结合仿真模型与粗糙度影响参数,指导车削刀具半径的选取。最后,基于仿真结果,选择半径为0.02 mm的半圆弧刀具加工,最终加工的衍射元件面形误差为292 nm,衍射环带位置误差最大为55 nm,高度误差最大为16 nm,粗糙度为5.6 nm。实验结果表明,该预测模型可以指导衍射光学元件高精度表面形貌的获取,有利于提高光学系统的成像质量,为高精度衍射光学元件的批量生产提供了技术支持,具有广泛的工程应用价值。

关 键 词:衍射光学元件  环带位置误差  刀具半径  单点金刚石车削
收稿时间:2022-07-21

Error control of diffractive optical element fabricated by single point diamond turning
Affiliation:1.Key Laboratory of Thin Film Technology and Optical Inspection of Shaanxi Province, School of Opto-electronic Engineering, Xi 'an Technological University, Xi 'an 710021, China2.Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
Abstract:  Objective   Diffractive optical elements are more and more widely used in infrared optical system, which requires higher processing quality of diffractive structure. High-precision diffractive microstructure surface can be machined directly by single point diamond turning. However, the position error and surface quality of diffraction structure have great influence on its optical properties. The diffraction efficiency of diffractive optical element is mainly affected by surface profile quality and surface roughness. The surface profile error and roughness error will produce shadow and scattering effect, which will reduce the diffraction efficiency of diffractive optical element. In order to improve the performance of diffractive optical components, there have been many researches on improving the turning quality of diffractive optical components, but the influence of the surface morphology of the diffraction plane has been ignored. In order to improve the performance of diffractive optical elements, it is necessary to control their turning errors accurately.  Methods   The factors affecting the surface quality of the diffraction element in the process of SPDT processing were analyzed. On this basis, a mathematical model among the ring position error, diffraction surface shape and tool radius was established (Fig.1), which was used to simulate and calculate the relationship between the size of the machining residue area and the turning surface roughness and tool radius. The selection of machining parameters of diffraction optical element turning is guided. Combined with the simulation model and roughness influence parameters, the selection of turning tool radius is guided. It provides technical support for obtaining the high-precision surface topography of diffractive optical elements and is beneficial to improve the imaging quality of diffractive optical elements. Then, based on the simulation results, the machining capability of SPDT on the diffraction surface and the validity of the simulation model are verified by experiments, so as to provide technical support for the high-precision mass production of diffraction optical components.  Results and Discussions   Finally, based on the simulation results, a semi arc tool with a radius of 0.02 mm is selected for machining. The shape error of diffraction element is 292 nm (Fig.6), the maximum position error of diffraction band is 55 nm, the maximum height error is 16 nm (Fig.7), and the roughness is 5.6 nm (Fig.9). Experimental results indicate that the prediction model can guide the acquisition of high precision surface topography of diffractive optical elements, which is beneficial to improve the imaging quality of the optical system. The research results provide technical support for the development of high-precision diffractive optical elements and have a wide range of engineering applications.  Conclusions   Based on the error analysis of single point diamond turning processing diffraction structure, the diffraction element machined by semicircular arc tool has higher machining accuracy and position accuracy. Before the diffraction element is processed, the proper tool radius is selected by using the simulation model of the position error of the annular band of the diffraction structure with a semicircular tool combined with the influence factors of surface roughness. High-precision diffractive optical element can be obtained by controlling the shape of the base plane. According to the design of the diffraction structure plane shape and simulation model, the semi-circular diamond tool with the tool radius of 0.02 mm was selected for turning. The surface shape error of the diffraction element was 292 nm, the position error of the diffraction ring was less than 55 nm, the height error was less than 16 nm, and the roughness was 5.6 nm. The experimental results show that the prediction model can guide the acquisition of high-precision surface topography of diffractive optical elements and improve the imaging quality of diffractive optical elements. The results provide technical support for the development of high-precision diffractive optical elements and have a wide range of engineering applications.
Keywords:
点击此处可从《红外与激光工程》浏览原始摘要信息
点击此处可从《红外与激光工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号