首页 | 本学科首页   官方微博 | 高级检索  
     

基于近红外吸收光谱技术的高精度CO2检测系统的研制
引用本文:李恒宽,朴亨,王鹏,姜炎坤,李峥,陈晨,曲娜,白晖峰,王彪,李美萱.基于近红外吸收光谱技术的高精度CO2检测系统的研制[J].红外与激光工程,2023,52(3):20210828-1-20210828-7.
作者姓名:李恒宽  朴亨  王鹏  姜炎坤  李峥  陈晨  曲娜  白晖峰  王彪  李美萱
作者单位:1.吉林大学 仪器科学与电气工程学院,吉林 长春 130026
基金项目:国家重点研发计划 (2018YFC1503802);吉林省科技发展计划项目(20200201050JC, 20220203016SF);吉林省发改委产业技术研究与开发项目 (2022C045-5);长春市科技发展计划项目 (21ZGG14)
摘    要:为了准确测量地震断裂带溢出的痕量CO2气体浓度,文中采用可调谐半导体激光吸收光谱(TDLAS)技术,选取波数4 978.202 cm-1作为CO2检测系统的吸收谱线,采用有效光程为40 m的多通池,以STM32作为主控和数据处理核心器件,研制了高精度CO2检测系统。针对系统中的探测器噪声与光学干涉条纹噪声,利用卡尔曼-小波分析算法滤波提升系统性能。实验表明,与滤波前相比,系统在50 ppmv CO2浓度下的二次谐波信噪比提升了2.06倍。在不同CO2浓度下(50、300、1 000、4 000、8 000 ppmv),系统误差为2.57%~2.66%。系统测量4 000 ppmv浓度下的CO2时检测精密度达到20.9 ppmv。利用Allan方差分析得出,积分时间在约61 s时对应的最低探测下限(MDL)为5.2 ppmv,实现了对CO2气体的高精度测量。结果表明,所设计的高精度CO2系统可以在气体检测领域为预测地震前兆提供良好前景。

关 键 词:痕量CO2  高精度  TDLAS技术  卡尔曼-小波分析  二次谐波
收稿时间:2021-11-05

Development of high precision CO2 detection system based on near infrared absorption spectroscopy
Abstract:  Objective   Crustal movement will discharge CO2 and other gases to the surface, and the surface concentration of CO2 near the fault zone will be abnormal before the earthquake. High-precision measurement of CO2 gas near the seismic zone can provide important help for the analysis of earthquake precursors. At present, the main methods for measuring CO2 concentration include non-dispersive infrared analysis technology, electrochemical technology, chromatographic analysis technology, etc. However, the above methods generally have the disadvantages of being easily disturbed by its background gas, low accuracy, and unable to achieve real-time monitoring. Tunable diode laser absorption spectroscopy (TDLAS) technology has the advantages of not being disturbed by its background gas, high accuracy, and real-time monitoring. In recent years, it has become a research hotspot at home and abroad and has been widely used in the field of gas detection. In this paper, a high-precision CO2 detection system is developed by using tunable diode laser absorption spectroscopy technology.  Methods   In this paper, a high-precision CO2 detection system for seismic monitoring is established. The tunable diode laser absorption spectroscopy technology is adopted, and the wave number 4 978.202 cm?1 is selected as the absorption spectral line of the CO2 detection system (Fig.1). A multi-channel unit with an effective optical path of 40 m is adopted, and STM32 is used as the control equipment and data processing core equipment (Fig.2). For the detector noise and optical interference fringe noise in the system, Kalman-wavelet analysis algorithm is used to filter and improve the system.  Results and Discussions   The system uses Kalman-wavelet analysis method to eliminate the influence of detector noise and optical fringe interference. The experiment shows that the second harmonic signal to noise ratio of the system at 50 ppmv CO2 concentration is 2.06 times higher than that before filtering (Fig.3). Under different CO2 concentrations (50 ppmv, 300 ppmv, 1 000 ppmv, 4 000 ppmv, 8 000 ppmv), the system error is 2.57%-2.66% (Fig.4). When the system measures CO2 at 4 000 ppmv concentration, the detection precision reaches 20.9 ppmv (Fig.5). According to Allan variance analysis, the method detection limit (MDL) corresponding to the integration time of about 61s is 5.2 ppmv (Fig.6), which realizes the high-precision measurement of CO2 gas.  Conclusions   This paper develops a high-precision CO2 detection system for seismic monitoring. The system adjusts the current injected into the DFB laser to make its output central wavelength at 2 008 nm and serve as the detection light source of CO2. In order to improve the lower detection limit of CO2 gas concentration, the system uses a self-developed cylindrical mirror multi-pass cell with an effective optical path of 40 m. The multi-pass cell can work stably in the temperature range of 0-40 ℃ and the pressure range of 1.333-101.325 kPa to ensure the reliability of the system in the field measurement process. The system control TEC realizes the temperature control of the controlled object, and the control precision of the temperature control system in the laboratory can reach 0.01 ℃. The Kalman-wavelet analysis algorithm is used to filter the system noise, and the frequency of optical fringe interference in the frequency domain is similar to that of cosine wave in the time domain, so as to separate it and remove the optical fringe interference. The experimental results show that the accuracy, precision and the method detection limit of the system are improved after filtering. The system combined with this method can make the geochemical gas measurement have a broader application prospect and provide important help for the accurate analysis of earthquake precursors.
Keywords:
点击此处可从《红外与激光工程》浏览原始摘要信息
点击此处可从《红外与激光工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号