首页 | 本学科首页   官方微博 | 高级检索  
     

基于边界极限点特征的改进YOLOv3目标检测
作者姓名:李克文  杨建涛  黄宗超
作者单位:中国石油大学(华东) 计算机科学与技术学院,山东青岛 266580
摘    要:目标数量多、尺度较小与高度重叠等问题导致目标检测精度低、难度大。为提升目标检测精度,尽可能避免漏检、误检情况,提出一种基于边界极限点特征的改进YOLOv3目标检测算法。首先,引入边界增强算子Border,从边界的极限点中自适应地提取边界特征来增强已有点特征,提高目标定位准确度;然后,增加目标检测尺度,细化特征图,增强特征图深、浅层语义信息的融合,提高目标检测精度;最后,基于目标检测中目标实例特性及改进网络模型,引入完全交并比(CIoU)函数对原YOLOv3损失函数进行改进,提高检测框收敛速度以及检测框召回率。实验结果表明,相较于原YOLOv3目标检测算法,改进后的YOLOv3目标检测算法的平均精度提高了3.9个百分点,且检测速度与原算法相近,能有效提高模型对目标的检测能力。

关 键 词:目标检测  边界极限点  YOLOv3算法  细化特征图  多尺度检测  损失函数
收稿时间:2021-11-24
修稿时间:2022-03-16
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号