首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical study of bluff body flow structures
Authors:Guocan Ling
Affiliation:(1) Laboratory for Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, 100 080 Beijing, China
Abstract:Our recent progress in numerical studies of bluff body flow structures and a new method for the numerical analysis of near wake flow field for high Reynolds number flow are introduced. The paper consists of three parts. In part one, the evolution of wake vortex structure and variation of forces on a flat plate in harmonic oscillatory flows and in in-line steady-harmonic combined flows are presented by an improved discrete vortex method, as the Keulegan-Carpenter number (KC) varies from 2 to 40 and ratios ofU m toU 0 are ofO(10−1),O(1) andO(10), respectively. In part 2, a domain decomposition hybrid method, combining the finite-difference and vortex methods for numerical simulation of unsteady viscous separated flow around a bluff body, is introduced. By the new method, some high resolution numerical visualization on near wake evolution behind a circular cylinder at Re=102, 103 and 3×103 are shown. In part 3, the mechanism and the dynamic process for the three-dimensional evolution of the Kármán vortex and vortex filaments in braid regions as well as the early features of turbulent structure in the wake behind a circular cylinder are presented numerically by the vortex dynamics method. This study was supported by the National Natural Science Foundation of China and the Laboratory for Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, as well as by the National Basic Research project “Nonlinear Science”.
Keywords:Near wake evolution  hybrid method  three-dimensional evolution  turbulent structure  bluff body
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号