首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis of IV measurements on PtSi-Si Schottky structures in a wide temperature range
Authors:D Donoval  M Barus  M Zdimal
Affiliation:

Microelectronics Department, Slovak Technical University, Ilkovicova 3, 812 19, Bratislava, Czechoslovakia

Abstract:IV Measurements on PtSi-Si Schottky structures in a wide temperature range from 90 to 350 K were carried out. The contributions of thermionic-emission current and various other current-transport mechanisms were assumed when evaluating the Schottky barrier height Φ0. Thus the generation-recombination, tunneling and leak currents caused by inhomogeneities and defects at the metal-semiconductor interface were taken into account.

Taking the above-mentioned mechanisms and their temperature dependence into consideration in the Schottky diode model, an outstanding agreement between theory and experiment was achieved in a wide temperature range.

Excluding the secondary current-transport mechanisms from the total current, a more exact value of the thermionic-emission saturation current Ite and thus a more accurate value ofΦb was reached.

The barrier height Φb and the modified Richardson constant A** were calculated from the plot of thermionic-emission saturation current Ite as a function of temperature too. The proposed method of finding Φb is independent of the exact values of the metal-semiconductor contact area A and of the modified Richardson constant A**. This fact can be used for determination of Φb in new Schottky structures based on multicomponent semiconductor materials.

Using the experimentally evaluated value A** = 1.796 × 106 Am?2K?2 for the barrier height determination from IV characteristics the value of Φb = 0.881 ± 0.002 eV was reached independent of temperature.

The more exact value of barrier height Φb is a relevant input parameter for Schottky diode computer-aided modeling and simulation, which provided a closer correlation between the experimental and theoretical characteristics.

Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号