首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波变换和去噪模型的光照不变人脸识别
引用本文:曹雪,余立功,杨静宇. 基于小波变换和去噪模型的光照不变人脸识别[J]. 计算机应用, 2011, 31(8): 2126-2129. DOI: 10.3724/SP.J.1087.2011.02126
作者姓名:曹雪  余立功  杨静宇
作者单位:南京理工大学 计算机科学与技术学院,南京210094
摘    要:针对正面光照人脸识别的难点,提出了一种应用小波变换和去噪模型的光照不变人脸识别算法。利用对图像的高频小波系数进行处理并运用去噪模型,提取光照人脸图像中的光照不变量,同时增强图像边缘特征,这有利于提取的光照不变量保持更多的人脸识别信息。在Yale B和CMU PIE人脸库上的实验结果表明,所提算法可以显著提高光照人脸图像的识别率。

关 键 词:光照不变量   人脸识别   小波变换   去噪模型
收稿时间:2011-02-28
修稿时间:2011-04-22

Illumination invariant face recognition based on wavelet transform and denoising model
CAO Xue,YU Li-gong,YANG Jing-yu. Illumination invariant face recognition based on wavelet transform and denoising model[J]. Journal of Computer Applications, 2011, 31(8): 2126-2129. DOI: 10.3724/SP.J.1087.2011.02126
Authors:CAO Xue  YU Li-gong  YANG Jing-yu
Affiliation:School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing Jiangsu 210094, China
Abstract:The recognition of frontal facial appearance with illumination is a difficult task for face recognition. In this paper, a novel illumination invariant extraction method was proposed to deal with the illumination problem based on wavelet transform and denoising model. The illumination invariant was extracted in wavelet domain by using wavelet-based denoising techniques. Through manipulating the high frequency wavelet coefficient combined with denoising model, the edge features of the illumination invariants were enhanced and more useful information was restored in illumination invariants, which could lead to an excellent face recognition performance. The experimental results on Yale face database B and CMU PIE face database show that satisfactory recognition rate can be achieved by the proposed method.
Keywords:illumination invariant   face recognition   wavelet transform   denoising model
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号