首页 | 本学科首页   官方微博 | 高级检索  
     


Short communication: Single-step genomic evaluation of milk production traits using multiple-trait random regression model in Chinese Holsteins
Authors:H. Kang  C. Ning  L. Zhou  S. Zhang  Q. Yan  J.-F. Liu
Affiliation:2. National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;3. Dairy Association of China, Beijing 100193, China
Abstract:The objectives of this study were to evaluate the prediction performance of the single-step genomic BLUP method using a multi-trait random regression model in genomic evaluation for milk production traits of Chinese Holsteins, and investigate how parameters w, τ, and ω used in the construction of the combined relationship matrix (H) affected prediction accuracy and bias. A total of 2.8 million test-day records from 0.2 million cows were available for milk, protein, and fat yields. Pedigree information included 0.3 million animals and 7,577 of them were genotyped with medium-density single nucleotide polymorphism marker panels. Genotypes were imputed into Geneseek Genomic Profiler HD (GeneSeek, Lincoln, NE) including 77K markers. A reduced data set for evaluating models was extracted from the full data set by removing test-day records from the last 4 yr. Bull and cow validation populations were constructed for each trait. We evaluated the prediction performance of the multiple-trait multiple-lactation random regression single-step genomic BLUP (RR-ssGBLUP) models with different values of parameters w, τ, and ω in the H matrix, taking consideration of inbreeding. We compared RR-ssGBLUP with the multiple-trait multiple-lactation random regression model based on pedigree and genomic BLUP. De-regressed proofs for 305-d milk, protein, and fat yields averaged over 3 lactations, which were calculated from the full data set, were used for posteriori validations. The results showed that RR-ssGBLUP was feasible for implementation in breeding practice, and its prediction performance was superior to the other 2 methods in the comparison, including prediction accuracy and unbiasedness. For bulls, RR-ssGBLUP models withw0.05τ2.0ω1.0,w0.05τ2.5ω1.0, andw0.1τ1.6ω0.4 achieved the best performance for milk, protein, and fat yields, respectively. For cows, the RR-ssGBLUP withw0.2τ1.6ω0.4 performed the best for all 3 traits. The H matrix constructed with larger τ and smaller ω gave better convergence in solving mixed model equations. Among different RR-ssGBLUP models, the differences in validation accuracy were small. However, the regression coefficient indicating prediction bias varied substantially. The increase of w and τ, and decrease of ω, led to an increase in the regression coefficient. The results demonstrated RR-ssGBLUP is a good alternative to the multi-step approach, but the optimal choice of parameters should be found via preliminary validation study to achieve the best performance.
Keywords:genomic evaluation  single-step GBLUP  random regression model  Chinese Holstein
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号