首页 | 本学科首页   官方微博 | 高级检索  
     

基于机器学习的一次风量软测量技术研究
引用本文:陈卫,罗志浩,程声樱. 基于机器学习的一次风量软测量技术研究[J]. 浙江电力, 2012, 0(8): 35-38
作者姓名:陈卫  罗志浩  程声樱
作者单位:浙江省电力公司电力科学研究院;台州发电厂
摘    要:磨煤机风量的准确、可靠测量是保证火电机组控制系统稳定运行,进而提高锅炉燃烧效率的重要因素,然而受现场安装条件等方面的限制,仪表测量得到的磨煤机风量与实际值偏差很大。针对这一问题,应用软测量方法,结合火电厂的实际应用,对磨煤机风量软测量中辅助变量的选择、数据预处理、测量模型的建立及校正等问题进行了研究。采用基于支持向量机回归的方法建立了风量软测量模型,并对建模过程中核函数、惩罚因子的选择进行了分析和研究。电厂实际运行数据的验证表明:该软测量方法能够获得比现有硬件流量仪表更准确可靠的测量结果,且能适应机组工况的变化。

关 键 词:软测量  机器学习  一次风量  测量技术  磨煤机

Study on Soft Sensing Technology for Primary Air Flow Based on Machine Learning
CHEN Wei,LUO Zhi-hao,CHENG Sheng-ying. Study on Soft Sensing Technology for Primary Air Flow Based on Machine Learning[J]. Zhejiang Electric Power, 2012, 0(8): 35-38
Authors:CHEN Wei  LUO Zhi-hao  CHENG Sheng-ying
Affiliation:Study on Soft Sensing Technology for Primary Air Flow Based on Machine Learning
Abstract:The accurate and reliable measurement of the coal mill air flow is an important factor for the stable operation of the thermal power unit control system and the improvement of the boiler combustion efficiency.However,limited by the site installation conditions,the values of coal mill air flow measured by the meters differ greatly from the actual values.Combined with the practical application in the thermal power plant,this paper adopts the soft sensing method to solve the problem.It studies the secondary variable selection,data preprocessing and measurement model establishment and correction etc.in the soft sensing of the coal mill.By applying the support vector machine(SVM) regression method,the air flow soft sensing model is established.The selection of kernel function and penalty factor during the establishment process is also analyzed and studied.The actual operation data in the plant verifies that the soft sensing method can obtain more accurate measurement results than the existing hardware flowmeters and can adapt to the changes in the unit conditions.
Keywords:soft sensing  machine learning  primary air flow  measurement technology  coal mill
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号