Effect of Saccharomyces cerevisiae fermentation product on feed intake parameters,lactation performance,and metabolism of transition dairy cattle |
| |
Authors: | K.E. Olagaray S.E. Sivinski B.A. Saylor L.K. Mamedova J.A. Sauls-Hiesterman I. Yoon B.J. Bradford |
| |
Affiliation: | 1. Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506;2. Diamond V, Cedar Rapids, IA 74570 |
| |
Abstract: | The transition period in dairy cattle is characterized by many stressors, including an abrupt diet change, but yeast product supplementation can alter the rumen environment to increase dairy cattle productivity. Saccharomyces cerevisiae fermentation product (SCFP) was fed from ?29 ± 5 to 42 d relative to calving (RTC) to evaluate the effects on feed intake, milk production, and metabolism. Treatments were control (n = 30) or SCFP (n = 34) incorporated into a total mixed ration. Cows were individually fed 3×/d prepartum and 2×/d postpartum. Blood samples were collected once during each of the following time points RTC: d ?28 to ?24 (wk ?4), d ?14 to ?10 (wk ?2), d 3 to 7 (wk 1), d 12 to 16 (wk 2), and d 31 to 35 (wk 5). Liver biopsies were taken once between d ?19 and d ?12 (wk ?3) and at 14 d in milk. Cows were milked 2×/d, and samples were taken 2 d/wk for composition analysis. Dry matter intake did not differ by treatment, but SCFP increased meals per day and decreased time between meals. Body weight (measured at enrollment, d 0, and d 42 RTC) and body condition score (scored weekly) were not affected by treatment. Milk, energy-corrected milk, and fat-corrected milk yields did not differ by treatment. Milk fat concentration was greater for SCFP, with significant differences in wk 4 and 5. Milk lactose concentration tended to be greater for the control and milk urea nitrogen tended to be lesser for the control, but there were no treatment effects on milk protein concentration or somatic cell count. Assuming equal digestibility, energy balance deficit was greater for SCFP than for the control (?6.15 vs. ?4.34 ± 0.74 Mcal/d), with significant differences in wk 4 and 5. Plasma concentrations of free fatty acids, β-hydroxybutyrate, glucose, and insulin did not differ with treatment, but cholesterol was greater for SCFP. Liver triglyceride increased and liver cholesterol decreased with time. Liver triglyceride did not differ by treatment, but liver cholesterol tended to be lesser in SCFP. Relative mRNA abundance of cholesterol-related genes (SREBF2, HMGCS1, HMGCR, MTTP, SPOB100, APOA1), FGF21, and CPT1A did not differ by treatment, but PCK1 tended to be greater for SCFP. The ketogenic transcript HMGCS2 was greater for SCFP, which aligns with SCFP increasing incidence of subclinical ketosis; however, BDH did not differ between treatments. In conclusion, SCFP supplementation increased meals per day with less time between meals, increased milk fat concentration, altered cholesterol metabolism, and increased incidence of subclinical ketosis, but early-lactation milk yield and metabolism were generally unaffected. |
| |
Keywords: | Corresponding author transition cow feeding behavior |
本文献已被 ScienceDirect 等数据库收录! |
|