首页 | 本学科首页   官方微博 | 高级检索  
     

测试部位、温度对苹果品质近红外分析准确度的影响
引用本文:蔡宋宋,王宝刚,冯晓元,李文生,丁立孝,栾 娜. 测试部位、温度对苹果品质近红外分析准确度的影响[J]. 食品科学, 2009, 30(4): 217-220. DOI: 10.7506/spkx1002-6630-200904047
作者姓名:蔡宋宋  王宝刚  冯晓元  李文生  丁立孝  栾 娜
作者单位:1.青岛农业大学食品科学与工程学院 2.北京市农林科学院林业果树研究所 3.北京联合大学应用文理学院
基金项目:北京市农委资助项目(20070605);北京市农林科学院青年科研基金项目
摘    要:本实验以苹果为试材建立常温近红外光谱无损检测模型,研究测试部位和样品温度对分析模型精度的影响,并探讨温度补偿模型最少用果量。结果表明,阳面2 点和阴面2 点光谱混合后平均所得光谱建立模型的预测精度最高,水分和颜色模型交互验证相关系数分别达0.8274 和0.8005;当不同温度样品添加量达到校正集样品数的20% 时基本可以消除温度波动对定量分析模型的影响;温度补偿验证结果表明,可溶性固形物、水分和颜色温度混合校正模型预测标准误差分别比常温模型低15.52%~29.77%、13.68%~31.68% 和45.9%~88.46%。

关 键 词:苹果  近红外光谱  测试部位  温度  品质  
收稿时间:2008-03-13

Effects of Testing Position and Temperature on Accuracy of Near-Infrared Prediction Model for Apple Quality
CAI Song-song,WANG Bao-gang,FENG Xiao-yuan,LI Wen-sheng,DING Li-xiao,LUAN Na. Effects of Testing Position and Temperature on Accuracy of Near-Infrared Prediction Model for Apple Quality[J]. Food Science, 2009, 30(4): 217-220. DOI: 10.7506/spkx1002-6630-200904047
Authors:CAI Song-song  WANG Bao-gang  FENG Xiao-yuan  LI Wen-sheng  DING Li-xiao  LUAN Na
Affiliation:1. College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China;2. Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China ;3. College of Arts and Science, Beijing Union University, Beijing 100083, China
Abstract:A nondestructive measurement model predicting quality of apple fruit was developed at room temperature by near infrared (NIR) spectroscopy. The effects of testing position and temperature on NIR model accuracy of evaluating apple qualities was studied, and the minimal quantity of samples used to compensate temperature fluctuations was discussed. Results showed that the accuracy of model constructed by averaging over spectra gained from two positions of each side (sun-expose side and shaded side) is the highest. One minus variance ratios of moisture and color model reach to 0.8274 and 0.8005, respectively. Samples of different temperatures (twenty percent of calibration sets) are needed to add in room temperature model to compensate temperature fluctuations. Hybrid calibration model accuracies of soluble solid content, moisture and color (°Hue) after temperature compensation are much higher than those of model at room temperature. Standard errors of the prediction of hybrid calibration model of soluble solid content, moisture and color are lower than those of model at room temperature by 15.52% to 29.77%, 13.68% to 31.68% and 45.9% to 88.46%, respectively.
Keywords:apple  near infrared spectroscopy  testing position  temperature  quality  
点击此处可从《食品科学》浏览原始摘要信息
点击此处可从《食品科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号