Abstract: | Most of elastomers for fabrication of comfortable epidermal devices and smart actuators produce responsive signals by the stimuli‐induced deformation. Herein, a dynamic visualization of external stimuli rather than the deformation through synthesis of a self‐healing poly(dimethylsiloxane) (PDMS)‐based elastomer doped with aggregation‐induced emission (AIE) molecules is reported. The self‐healing PDMS‐based elastomer is designed and synthesized through molecule integration of reversible multi‐strength H‐bonds and permanent covalent crosslink sites. The adjustment of the weight ratio of elastic cross‐linker offers tunable mechanical properties of the resultant elastomer. After doping such an elastomer with AIE molecules of 1,1,2,2‐tetrakis(4‐nitrophenyl)ethane, the elastomer composite displays strong on–off fluorescence depending upon mechanical damage and temperatures, which can be used to detect the breaking and self‐healing performances, as well as the temperature change. The strategy described here provides another way to develop smart polymeric elastomers for practical applications. |