首页 | 本学科首页   官方微博 | 高级检索  
     


Development of a void ratio-moisture ratio-net stress framework for the prediction of the volumetric behavior of unsaturated granular materials
Authors:Ehsan Yaghoubi  Mahdi M Disfani  Arul Arulrajah  Jayantha Kodikara
Affiliation:1. Coffey, A Tetra Tech Company, Melbourne, Australia;2. Department of Infrastructure Engineering, The University of Melbourne, Melbourne, Australia;3. Department of Civil and Construction Engineering, Swinburne University of Technology, Melbourne, Australia;4. Department of Civil Engineering, Monash University, Melbourne, Australia
Abstract:Despite extensive research on the behavior of unsaturated fine-grained materials, there is still a lack of understanding of the volumetric behavior of unsaturated granular materials. In this research, a model has been developed to predict the fundamental volumetric behavior of unsaturated granular materials through loading and wetting state paths. In this regard, a loading-wetting surface was developed in a space of void ratio-moisture ratio-net stress. A distinctive feature of the proposed model is the relative simplicity in obtaining the model parameters using conventional geotechnical testing equipment. Two types of recycled granular materials, commonly applied in unbound pavements were used, namely, recycled crushed brick (CB) and excavation waste rock (WR). The uniqueness of the developed surface was evaluated by employing a number of loading and wetting state paths. The results indicate that the developed surface is unique in its loading state paths; however, it only shows uniqueness in its wetting state paths for stress levels greater than 2000 kPa. The proposed model seeks to introduce the application of the unsaturated soil mechanics theory, for predicting the behavior of granular materials in the field, by providing a practical and cost-effective methodology.
Keywords:Corresponding author at: Department of Infrastructure Engineering  Melbourne School of Engineering  The University of Melbourne  Parkville  VIC 3010  Australia    Unsaturated granular material  Recycled materials  Volumetric behavior  Constitutive surface  Compaction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号