首页 | 本学科首页   官方微博 | 高级检索  
     


Temporal changes in milk fatty acid composition during diet-induced milk fat depression in lactating cows
Authors:H Leskinen  L Ventto  P Kairenius  KJ Shingfield  J Vilkki
Affiliation:1. Milk Production, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland;2. Animal Genetics, Production Systems, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland
Abstract:Diet-induced milk fat depression (MFD) in lactating cows has been attributed to alterations in ruminal lipid metabolism leading to the formation of specific fatty acid (FA) biohydrogenation intermediates that directly inhibit milk fat synthesis. However, the mechanisms responsible for decreased lipid synthesis in the mammary gland over time are not well defined. The aim of this study was to evaluate the effect of diet on milk FA composition and milk fat production over time, especially during MFD, and explore the associations between MFD and FA biohydrogenation intermediates in omasal digesta and milk. Four lactating Finnish Ayrshire cows used in a 4 × 4 Latin square with a 2 × 2 factorial arrangement of treatments and 35-d experimental periods were fed diets formulated to cause differences in ruminal and mammary lipid metabolism. Treatments consisted of an iso-nitrogenous total mixed ration based on grass silage with a forage to concentrate ratio of 65:35 or 35:65 without added oil, or with sunflower oil at 50 g/kg of diet dry matter. The high-concentrate diet with sunflower oil (HSO) induced a 2-stage drop in milk fat synthesis that was accompanied by specific temporal changes in the milk FA composition. The MFD on HSO was associated especially with trans-10 18:1 and also with trans-9,cis-11 conjugated linoleic acid (CLA) in milk and omasal digesta across all diets and was accompanied by the appearance of trans-10,cis-15 18:2. Trans-10,cis-12 CLA was increased in HSO, but milk fat secretion was not associated with omasal or milk trans-10,cis-12 CLA. The temporal changes in milk fat content and yield and milk FA composition reflect the shift from the predominant ruminal biohydrogenation pathway to an alternative pathway. The ambiguous role of trans-10,cis-12 CLA suggests that trans-10 18:1, trans-9,cis-11 CLA and trans-10,cis-15 18:2 or additional mechanisms contributed to the diet-induced MFD in lactating cows.
Keywords:Corresponding author  ruminant  dairy cow  plant oil
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号