首页 | 本学科首页   官方微博 | 高级检索  
     

心电信号QRS波群检测算法研究
引用本文:苏丽,赵国良,李东明. 心电信号QRS波群检测算法研究[J]. 哈尔滨工程大学学报, 2005, 26(4): 513-517
作者姓名:苏丽  赵国良  李东明
作者单位:哈尔滨工程大学,自动化学院,黑龙江,哈尔滨,150001;哈尔滨工程大学,自动化学院,黑龙江,哈尔滨,150001;哈尔滨工程大学,自动化学院,黑龙江,哈尔滨,150001
基金项目:黑龙江省信息产业厅信息产业化基金资助项目(FX-02-048)
摘    要:心电信号特征参数的提取和识别是心电图分析和诊断的基础.在心电信号的分析中,快速准确地检出QRS波群非常重要,它是计算相关参数和诊断的前提.该文对QRS波群的检测算法进行了研究,对传统差分阈值法在R波检测中存在的一些问题加以改进,将正向和倒置R波分开检测,提出了在自适应差分阈值法检测正向R波的基础上,用幅值基线比较法检测倒置R波的检测方法.在Q、S波检测方面,文章以差分法为基础,给出了Q、S波定位的一种简便易行的方法.利用美国麻省理工学院的MIT—BIH心电数据库和临床实测数据对以上方法进行验证,QRS波群的检出率高达99.4%以上.实验结果表明,该方法简单有效、准确率高,适于实际应用。

关 键 词:心电图  QRS波群  特征参数检测  差分阈值法
文章编号:1006-7043(2005)03-0513-05
修稿时间:2004-06-11

Study of algorithms of QRS complexes detection in electrocardiogram signal
SU Li,ZHAO Guo-liang,LI Dong-ming. Study of algorithms of QRS complexes detection in electrocardiogram signal[J]. Journal of Harbin Engineering University, 2005, 26(4): 513-517
Authors:SU Li  ZHAO Guo-liang  LI Dong-ming
Abstract:Analysis and diagnosis of an electrocardiogram (ECG)is based on the extraction and recognition of characteristic parameters in an electrocardiogram signal. The precise detection of QRS complexes is very important in analysis of electrocardiogram signal, because it is the precondition of the calculation of correlative parameters and diagnosis.To improve the conventional difference threshold algorithm. Algorithms of QRS complexes detection were studied on the basis of detecting positive R wave by adaptive difference threshold algorithm, an amplitude baseline algorithm was proposed to detect inverse R wave. Based on Tompkins's difference algorithm, a simple and convenient method was given to detect Q and S point. Finally, the American MIT-BIH database and clinical data were used to validate the algorithms, and detection rate of the QRS complexes excelled to 99.4%. Experimental results indicated that these proposed methods were simple, effective, accurate and suitable for practical application.
Keywords:electrocardiogram(ECG)  QRS complexes  detection of characteristic parameters  difference threshold algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号