首页 | 本学科首页   官方微博 | 高级检索  
     


Kinetic analysis of the interaction of actin-depolymerizing factor (ADF)/cofilin with G- and F-actins. Comparison of plant and human ADFs and effect of phosphorylation
Authors:F Ressad  D Didry  GX Xia  Y Hong  NH Chua  D Pantaloni  MF Carlier
Affiliation:Dynamique du Cytosquelette, Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 91198 Gif-sur-Yvette, France.
Abstract:The thermodynamics and kinetics of actin interaction with Arabidopsis thaliana actin-depolymerizing factor (ADF)1, human ADF, and S6D mutant ADF1 protein mimicking phosphorylated (inactive) ADF are examined comparatively. ADFs interact with ADP.G-actin in rapid equilibrium (k+ = 155 microM-1.s-1 and k- = 16 s-1 at 4 degreesC under physiological ionic conditions). The kinetics of interaction of plant and human ADFs with F-actin are slower and exhibit kinetic cooperativity, consistent with a scheme in which the initial binding of ADF to two adjacent subunits of the filament nucleates a structural change that propagates along the filament, allowing faster binding of ADF in a "zipper" mode. ADF binds in a non-cooperative faster process to gelsolin-capped filaments or to subtilisin-cleaved F-actin, which are structurally different from standard filaments (Orlova, A., Prochniewicz, E., and Egelman, E. H. (1995) J. Mol. Biol. 245, 598-607). In contrast, the binding of phalloidin to F-actin cooperatively inhibits its interaction with ADF. The ADF-facilitated nucleation of ADP.actin self-assembly indicates that ADF stabilizes lateral interactions in the filament. Plant and human ADFs cause only partial depolymerization of F-actin at pH 8, consistent with identical functions in enhancing F-actin dynamics. Phosphorylation does not affect ADF activity per se, but decreases its affinity for actin by 20-fold.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号