首页 | 本学科首页   官方微博 | 高级检索  
     


Graphene Microbolometers with Superconducting Contacts for Terahertz Photon Detection
Authors:Christopher B McKitterick  Heli Vora  Xu Du  Boris S Karasik  Daniel E Prober
Affiliation:1. Departments of Physics and Applied Physics, Yale University, New Haven, CT, 06520, USA
2. Department of Physics, Stony Brook University, Stony Brook, NY, 11790, USA
3. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
Abstract:We report on noise and thermal conductance measurements taken in order to determine an upper bound on the performance of graphene as a terahertz photon detector. The main mechanism for sensitive terahertz detection in graphene is bolometric heating of the electron system. To study the properties of a device using this mechanism to detect terahertz photons, we perform Johnson noise thermometry measurements on graphene samples. These measurements probe the electron–phonon behavior of graphene on silicon dioxide at low temperatures. Because the electron–phonon coupling is weak in graphene, superconducting contacts with large gap are used to confine the hot electrons and prevent their out-diffusion. We use niobium nitride leads with a \(T_\mathrm {c}\approx 10\)  K to contact the graphene. We find these leads make good ohmic contact with very low contact resistance. Our measurements find an electron–phonon thermal conductance that depends quadratically on temperature above 4 K and is compatible with single terahertz photon detection.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号