首页 | 本学科首页   官方微博 | 高级检索  
     


Screen‐printed Emitter‐Wrap‐Through solar cell with single step side selective emitter with 18.8% efficiency
Authors:N Mingirulli  D Stüwe  J Specht  A Fallisch  D Biro
Abstract:A fabrication process for Emitter‐Wrap‐Through solar cells on monocrystalline material with high quality gap passivation by wet thermal silicon dioxide is investigated. Masking and structuring steps are performed by screen‐printing technology. Via‐holes are created by an industrially applicable high‐speed laser drilling process. The cell structure features a selective emitter structure fabricated in a single high temperature step: a highly doped emitter at the via‐holes and the rear side, allowing for a low via‐hole resistivity as well as a low resistivity contact to screen‐printed pastes, and a moderately doped front side emitter exhibiting high quantum efficiency in the low wavelength range. Therefore a novel approach is applied depositing either doped or undoped PECVD silicon dioxide layers on the front side. It is shown that doping profiles advantageous for the EWT‐cell structure can be achieved. The screen‐printed aluminum paste is found to penetrate the underlying thermal dioxide layer at appropriate contact firing conditions leading to a zone of high recombination in the overlap region of aluminum and silicon dioxide. It is shown that conventional PECVD‐anti‐reflection silicon nitride acts as effective protection layer reducing the recombination in this region. Designated area conversion efficiencies up to 18.8% on FZ material are obtained applying the single step side selective emitter fabrication technique. Copyright © 2010 John Wiley & Sons, Ltd.
Keywords:silicon solar cells  back‐contacted solar cells  Emitter‐Wrap‐Through  screen‐printing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号