首页 | 本学科首页   官方微博 | 高级检索  
     


Nonlinear control of rapid thermal chemical vapor deposition under uncertainty
Affiliation:Department of Chemical Engineering, University of California, Los Angeles, CA 90093-1592, USA;Technical University of Budapest H-1521 Budapest, Hungary
Abstract:This article focuses on nonlinear control of a rapid thermal chemical vapor deposition (RTCV'D) process in the presence of significant model uncertainty and disturbances. Initially, a detailed mathematical model of the RTCVD process is presented consisting of a nonlinear parabolic partial differential equation (PDE) which describes the time evolution of the wafer temperature across the radius of the wafer, coupled with a set of nonlinear ordinary differential equations (ODEs), which describe the time evolution of the concentrations of the various species. Then, the synthesis of a nonlinearoutput feedback controller based on the RTCVD process model by following a control methodology for nonlinear parabolic PDE systems introduced in (Baker and Christofides, 1998) is discussed. The controller uses measurements of wafer temperature at four locations to manipulate the power of the top lamps in order to achieve uniform temperature, and thus, uniform deposition of the thin film on the wafer over the entire process cycle. The nonlinearoutput feedback controller is successfully implemented through computer simulations and is shown to attenuate significant model uncertainty end disturbances and to outperform a proportional integral (PI) control scheme.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号