Abstract: | A Wireless Mesh Network (WMN) consists of fixed wireless routers, each of which provides service for mobile clients within its coverage area and inter‐connects mesh routers to form a connected mesh backbone. Wireless mesh routers are assigned with a channel or a code to prevent collisions in transmission. With a power control mechanism, each router could be assigned with a power level to control connectivity, interference, spectrum spatial reuse, and topology. Assigning high transmitting power level to a router can enhance the network connectivity but may increase the number of neighbors and worsen the collision problem. How to assign an appropriate power level to each router to improve the network connectivity with a constraint of limited channels is one of the most important issues in WMNs. Given a network topology and a set of channels that has been assigned to mesh routers, the proposed channel‐switching mechanism further reassigns each router with a power level and switches channels of routers to optimize both power efficiency and connectivity. A matrix‐based presentation and operations are proposed to respectively identify and resolve the channel switching problems. Simulation study reveals that the proposed mechanisms increase network throughput and provides a variety of route selection, and thus improves the performance of a given WMN. Copyright © 2009 John Wiley & Sons, Ltd. |