首页 | 本学科首页   官方微博 | 高级检索  
     


Cellulose fiber‐reinforced polylactic acid
Authors:AN Frone  S Berlioz  J‐F Chailan  DM Panaitescu  D Donescu
Abstract:Polymer composites from polylactic acid (PLA) and two types of cellulose fibers obtained either by acid hydrolysis of microcrystalline cellulose (HMCC) or by mechanical disintegration of regenerated wood fibers (MF) were prepared and characterized. To enhance the compatibility of the cellulose fibers with PLA matrix, a surface treatment based on 3‐aminopropyltriethoxysilane (APS) was performed. The Fourier Transform Infrared (FTIR) spectroscopy was used to determine the chemical groups involved in the surface modification reaction. The silanization treatment resulted in different modifications on both types of cellulose fibers because of their different structural and morphological characteristics. The composites were prepared by incorporating 2.5% of the treated or untreated HMCC and MF into a PLA matrix using a melt‐compounding technique. An improved adhesion between the two phases of the composite materials was observed by scanning electron microscopy thanks to treatment. The dynamic mechanical thermal analyses showed that both untreated and silane treated fibers led to an improvement of the storage modulus of PLA in the glassy state. A higher enhancement of the storage modulus in the case of PLA/HMCC composites than the composites containing MF was obtained as a result of the high aspect ratio of these fibers which allows better matrix‐to‐filler stress transfer. Furthermore, the storage modulus of PLA composites was enhanced by silanization even at higher temperatures especially after thermal treatment. The cellulose fibers addition in PLA matrix modified significantly the relaxation phenomenon as observed in tan δ curves, emphasizing strongly modified molecular mobility of PLA macromolecules and crystallization changes. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号