Abstract: | Smoking-cessation drugs bind many off-target nicotinic acetylcholine receptors (nAChRs) and cause severe side effects if they are based on nicotine. New drugs that bind only those receptors, such as 62* nAChR, implicated in nicotine addiction would avoid the off-target binding. Indolizidine (-)-237D (IND (-)-237D), a bicyclic alkaloid, has been shown to block 62* containing nAChRs and functionally inhibit the nicotine-evoked dopamine release. To improve the affinity of indolizidine (-)-237D for 62*, we built a library of 2226 analogs. We screened virtually the library against a homology model of 62 nAChR that we derived from the recent crystal structure of 42 nAChR. We also screened the crystal structure of 42 nAChR as a control on specificity. We ranked the compounds based on their predicted free energy of binding. We selected the top eight compounds bound in their best pose and subjected the complexes to 100 ns molecular dynamics simulations to assess the stability of the complexes. All eight analogs formed stable complexes for the duration of the simulations. The results from this work highlight nine distinct analogs of IND (-)-237D with high affinity towards 62* nAChR. These leads can be synthesized and tested in in vitro and in vivo studies as lead candidates for drugs to treat nicotine addiction. |