Flexible Multibody Dynamics: Review of Past and Recent Developments |
| |
Authors: | Shabana Ahmed A. |
| |
Affiliation: | (1) Department of Mechanical Engineering, University of Illinois at Chicago, Chicago, IL, 60607-7022, U.S.A |
| |
Abstract: | In this paper, a review of past and recent developments in the dynamics of flexible multibody systems is presented. The objective is to review some of the basic approaches used in the computer aided kinematic and dynamic analysis of flexible mechanical systems, and to identify future directions in this research area. Among the formulations reviewed in this paper are the floating frame of reference formulation, the finite element incremental methods, large rotation vector formulations, the finite segment method, and the linear theory of elastodynamics. Linearization of the flexible multibody equations that results from the use of the incremental finite element formulations is discussed. Because of space limitations, it is impossible to list all the contributions made in this important area. The reader, however, can find more references by consulting the list of articles and books cited at the end of the paper. Furthermore, the numerical procedures used for solving the differential and algebraic equations of flexible multibody systems are not discussed in this paper since these procedures are similar to the techniques used in rigid body dynamics. More details about these numerical procedures as well as the roots and perspectives of multibody system dynamics are discussed in a companion review by Schiehlen [79]. Future research areas in flexible multibody dynamics are identified as establishing the relationship between different formulations, contact and impact dynamics, control-structure interaction, use of modal identification and experimental methods in flexible multibody simulations, application of flexible multibody techniques to computer graphics, numerical issues, and large deformation problem. Establishing the relationship between different flexible multibody formulations is an important issue since there is a need to clearly define the assumptions and approximations underlying each formulation. This will allow us to establish guidelines and criteria that define the limitations of each approach used in flexible multibody dynamics. This task can now be accomplished by using the absolute nodal coordinate formulation which was recently introduced for the large deformation analysis of flexible multibody systems. |
| |
Keywords: | flexible multibody dynamics finite element formulations incremental methods large rotations finite segment method linear theory of elastodynamics elastic body inertia rigid body inertia impact in flexible body dynamics control-structure interaction computer graphics large deformation problem |
本文献已被 SpringerLink 等数据库收录! |
|