首页 | 本学科首页   官方微博 | 高级检索  
     


Erosion rate correlations of a pipe protruded in an abrupt pipe contraction
Authors:MA Habib  HM BadrR Ben-Mansour  ME Kabir
Affiliation:Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
Abstract:Erosion is one of the most serious problems in various gas and liquid flow passages such as flow in pipes, pumps, turbines, compressors and many other devices. Sand presence causes loss of pipe wall thickness that can lead to pipe erosion, frequent failures and loss of expensive production time. The importance of this problem is mainly due to many related engineering applications, viz. heat exchangers. In order to reduce the frequency of such pipe erosions, caps in the form of replaceable pipes are protruded in the sudden contraction regions which are exposed to most of the serious erosion rates. In the present work, numerical investigation of the erosion of a pipe protruded in a sudden contraction is presented. The turbulent, steady, 2-D axi-symmetric flow inside an axi-symmetric abrupt contraction pipe with a pipe protrusion embedded in it was solved by steady-state time averaged conservation equations of mass and momentum along with two equation model for turbulence. Particles are tracked using Lagrangian particle tracking. An erosion model was employed to investigate the erosion phenomena for the given geometry. The influence of the different parameters such as the inlet flow velocity (3–10 m/s), the particle diameter (10–400 μm), the protruded pipe geometry (thickness T=1–5 mm and depth H=2–5 mm) and the pipe contraction ratio (Cr=0.25–0.5) on the erosion of pipe protrusion was investigated. Correlations for the influence of inlet flow velocity, depth and thickness of the protruded pipe on the erosion rate are presented.
Keywords:Erosion rate  Pipe contraction  Pipe protrusion  Computational methods
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号