首页 | 本学科首页   官方微博 | 高级检索  
     


Calculation of transient strain energy release rates under impact loading based on the virtual crack closure technique
Authors:De Xie  Sherrill B Biggers Jr
Affiliation:1. Alpha STAR Corporation, 5199 East Pacific Coast Highway, Suite 410, Long Beach, CA 90804, USA;2. Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA
Abstract:This paper describes an interface element to calculate the strain energy release rates based on the virtual crack closure technique (VCCT) in conjunction with finite element analysis (FEA). A very stiff spring is placed between the node pair at the crack tip to calculate the nodal forces. Dummy nodes are introduced to extract information for displacement openings behind the crack tip and the virtual crack jump ahead of the crack tip. This interface element leads to a direct calculation of the strain energy release rate (both components GI and GII) within a finite element analysis without extra post-processing. Several examples of stationary cracks under impact loading were examined. Dynamic stress intensity factors were converted from the calculated transient strain energy release rate for comparison with the available solutions by the others from numerical and experimental methods. The accuracy of the element is validated by the excellent agreement with these solutions. No convergence difficulty has been encountered for all the cases studied. Neither special singular elements nor the collapsed element technique is used at the crack tip. Therefore, the fracture interface element for VCCT is shown to be simple, efficient and robust in analyzing crack response to the dynamic loading. This element has been implemented into commercial FEA software ABAQUS® with the user defined element (UEL) and should be very useful in performing fracture analysis at a structural level by engineers using ABAQUS®.
Keywords:Virtual crack closure technique  Dynamic fracture  Strain energy release rate  Stress intensity factor  Interfacial element
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号