首页 | 本学科首页   官方微博 | 高级检索  
     

深度学习在分组密码差分区分器上的研究应用
引用本文:侯泽洲,陈少真,任炯炯. 深度学习在分组密码差分区分器上的研究应用[J]. 软件学报, 2022, 33(5): 1893-1906
作者姓名:侯泽洲  陈少真  任炯炯
作者单位:战略支援部队信息工程大学, 河南 郑州 450001;战略支援部队信息工程大学, 河南 郑州 450001;密码科学技术国家重点实验室, 北京 100878
基金项目:数学工程与先进计算国家重点实验室开放基金(2018A03); 国家密码发展基金(MMJJ20180203); 信息保障技术重点实验室开放基金(KJ-17-002)
摘    要:差分分析在分组密码分析领域是一种重要的研究方法, 针对分组密码的差分分析的重点在于找到一个轮数或者概率更大的差分区分器. 首先描述了通过深度学习技术构造差分区分器时所需要的数据集的构造方法, 并且分别基于卷积神经网络(convolutional neural networks, CNN)和残差神经网络(residual...

关 键 词:深度学习  卷积神经网络  残差神经网络  分组密码  差分区分器
收稿时间:2020-05-03
修稿时间:2020-06-28

Research and Application of Deep Learning on Differential Distinguisher of Block Cipher
HOU Ze-Zhou,CHEN Shao-Zhen,REN Jiong-Jiong. Research and Application of Deep Learning on Differential Distinguisher of Block Cipher[J]. Journal of Software, 2022, 33(5): 1893-1906
Authors:HOU Ze-Zhou  CHEN Shao-Zhen  REN Jiong-Jiong
Affiliation:Information Engineering University, Zhengzhou 450001, China;Information Engineering University, Zhengzhou 450001, China;State Key Laboratory of Cryptology, Beijing 100878, China
Abstract:Differential cryptanalysis is an important method in the field of block cipher. The key point of differential cryptanalysis is to find a differential distinguisher with longer rounds or higher probability. Firstly, the method of generating data set is described which is used to train a differential distinguisher based on deep learning. At the same time, the differential distinguisher of two kinds of lightweight block cipher is trained, SIMON32 and SPECK32, based on convolutional neural networks (CNN) and residual neural network (ResNet). In addition, two differential distinguishers are compared and it is found that ResNet is good at differential distinguisher of SIMON32, CNN is good at SPECK32 when considering time and accuracy. Next, the influence of the number of convolution operations of the network model is studied on the accuracy of the neural distinguisher, and it is found that adding the number of convolution layers of the CNN and the number of residual blocks of the ResNet model will cause the accuracy decrease compared with original networks. Finally, some suggestions are given to select networks and parameters when constructing a differential distinguisher based on deep learning, i.e., the CNN with low convolutional layers and the ResNet with low residual blocks should be considered as the first choose.
Keywords:deep learning  convolutional neural networks (CNN)  residual neural network (ResNet)  block cipher  differential distinguisher
本文献已被 万方数据 等数据库收录!
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号