首页 | 本学科首页   官方微博 | 高级检索  
     


Interactive cloud rendering using temporally coherent photon mapping
Affiliation:1. Department of Neurology, King George Medical University, Uttar Pradesh, Lucknow, India;2. Department of Microbiology, King George Medical University, Uttar Pradesh, Lucknow, India;3. Department of Pediatrics, King George Medical University, Uttar Pradesh, Lucknow, India
Abstract:This work presents a novel interactive algorithm for simulation of light transport in clouds. Exploiting the high temporal coherence of the typical illumination and morphology of clouds we build on volumetric photon mapping, which we modify to allow for interactive rendering speeds—instead of building a fresh irregular photon map for every scene state change we accumulate photon contributions in a regular grid structure. This is then continuously being refreshed by re-shooting only a fraction of the total amount of photons in each frame. To maintain its temporal coherence and low variance, a low-resolution grid is initially used, and is then upsampled to the density field resolution on a physical basis in each frame. We also present a technique to store and reconstruct the angular illumination information by exploiting properties of the standard Henyey–Greenstein function, namely its ability to express anisotropic angular distributions with a single dominating direction. The presented method is physically plausible, conceptually simple and comparatively easy to implement. Moreover, it operates only above the cloud density field, thus not requiring any precomputation, and handles all light sources typical for the given environment, i.e., where one of the light sources dominates.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号