摘 要: | 针对锂离子电池剩余寿命难以预测以及预测结果不精确等问题,提出了采用电池循环剩余容量数据作为时间序列样本,基于经验模态分解对各分解出的子序列建立自回归移动平均(ARMA)预测模型,并经过Pearson相关系数验证各子序列的相关性,加权重构后实现电池剩余寿命(RUL)预测。实验采用NASA锂离子电池数据集,用均方根误差(RMSE)和平均绝对误差(MAE)作为评价标准,对所提模型(EMD-ARMA预测模型)、Elman神经网络模型和ARMA模型的预测结果进行对比分析。试验结果表明,在正常工况下,所提的EMD-ARMA预测模型计算的RMSE和MAE的值为三个模型中的最小值,预测误差小于1%;并且预测误差随预测起始点的后移会逐渐减小,证明所提预测算法在长期预测上有较稳定的收敛性,预测精度也有显著提高。
|