首页 | 本学科首页   官方微博 | 高级检索  
     


Electrical Actuation of Coated and Composite Fibers Based on Poly[ethylene-co-(vinyl acetate)]
Authors:Muhammad Farhan  Deeptangshu Chaudhary  Ulrich Nöchel  Marc Behl  Karl Kratz  Andreas Lendlein
Affiliation:Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany
Abstract:Robots are typically controlled by electrical signals. Resistive heating is an option to electrically trigger actuation in thermosensitive polymer systems. In this study electrically triggerable polyethylene-co-(vinyl acetate)] (PEVA)-based fiber actuators are realized as composite fibers as well as polymer fibers with conductive coatings. In the coated fibers, the core consists of crosslinked PEVA (cPEVA), while the conductive coating shell is achieved via a dip coating procedure with a coating thickness between 10 and 140 µm. The conductivity of coated fibers σ = 300–550 S m?1 is much higher than that of the composite fibers σ = 5.5 S m?1. A voltage (U) of 110 V is required to heat 30 cm of coated fiber to a targeted temperature of ≈ 65 °C for switching in less than a minute. Cyclic electrical actuation investigations reveal ε′rev = 5 ± 1% reversible change in length for coated fibers. The fabrication of such electro-conductive polymeric actuators is suitable for upscaling so that their application potential as artificial muscles can be explored in future studies.
Keywords:artificial muscles  fiber actuators  resistive heating  shape-memory polymer actuators  soft robotics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号