首页 | 本学科首页   官方微博 | 高级检索  
     


Artificial UV-B and solar radiation reduce in vitro infectivity of the human pathogen Cryptosporidium parvum
Authors:Connelly Sandra J  Wolyniak Elizabeth A  Williamson Craig E  Jellison Kristen L
Affiliation:Department of Zoology, Miami University, Oxford, Ohio 45056, USA. connelsj@muohio.edu
Abstract:The potential for solar ultraviolet (UV) radiation to act as a significant abiotic control of Cryptosporidium parvum oocysts in nature is unknown. Infectivity of C. parvum following exposure to artificial UV-B and natural solar radiation, with and without UV wavelengths, was tested under controlled pH and temperature conditions. Percent infectivity of exposed oocysts was determined by in vitro cell culture. Artificial UV-B exposures of 32 and 66 kJ/m2 significantly decreased oocyst infectivity by an average of 58 and 98%, respectively. Exposure of oocysts to approximately half and full intensity of full solar spectrum (all wavelengths) for a period of less than 1 day (10 h) in mid-summer reduced mean infectivity by an average of 67% and >99.99%, respectively. Exposure of the C. parvum oocysts to UV-shielded solar radiation (>404 nm) in early autumn reduced mean infectivity by 52%, while full spectrum solar radiation (exposure at all wavelengths) reduced mean infectivity by 97%. The data provide strong evidence that exposure to natural solar radiation can significantly reduce C. parvum infectivity. Direct effects of solar radiation on oocysts in nature will depend on the depth distribution of the oocysts, water transparency, mixing conditions, and perhaps other environmental factors such as temperature, pH, and stress.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号