首页 | 本学科首页   官方微博 | 高级检索  
     


Fabrication of Germanosilicate glass optical fibers containing Tm/sup 2+/ ions and their nonlinear optical properties
Authors:Yune Hyoun Kim Un-Chul Paek Won-Taek Han
Affiliation:Dept. of Inf. & Commun., Gwangju Inst. of Sci. & Technol., South Korea;
Abstract:Germanosilicate glass optical fibers incorporated with the Tm/sup 2+/ ions were fabricated to enhance optical nonlinearity by providing a strong reduction environment based on the solution doping technique in the modified chemical vapor deposition (MCVD) process. The incorporation of the Tm/sup 2+/ ions into the fiber core was identified by the electron paramagnetic resonance (EPR) spectrum in the fiber preform, and the absorption and emission properties between 350 and 1600 nm of the Tm/sup 2+/ ions in optical fibers and the fiber preform. A strong broad absorption band due to the Tm/sup 2+/ ions appeared from 350 to /spl sim/900 nm, and a broad emission from /spl sim/600 to /spl sim/1050 nm and the other emission from /spl sim/1050 to /spl sim/1300 nm, which were not shown in the Tm/sup 3+/ ions, were found upon Ar-ion laser pumping at 515 nm. Both absorption and emission results confirm that the Tm/sup 2+/ ions in the germanosilicate glass have the 4f-5d energy band from 350 to /spl sim/900 nm and the 4f-4f energy level at /spl sim/1115 nm. Also, the resonant nonlinearity at /spl sim/1310 and /spl sim/1530 nm due to the Tm/sup 2+/ ions in the fiber was measured upon the 515 nm optical pumping by using a long-period fiber grating (LPG) pair method. The nonlinear refractive index n/sub 2/ at /spl sim/1310 and /spl sim/1530 nm was found to be /spl sim/4/spl times/10/sup -15/ m/sup 2//W, where 70% and 30% of the n/sub 2/ are attributed to the nonradiative transitions and the radiative transitions, respectively.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号