首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of magnetic field on the zero valent iron induced oxidation reaction
Authors:Kim Dong-hyo  Kim Jungwon  Choi Wonyong
Affiliation:School of Environmental Science and Engineering, Pohang University of Scienceand Technology (POSTECH), Pohang 790-784, Republic of Korea
Abstract:The magnetic field (MF) effect on the zero valent iron (ZVI) induced oxidative reaction was investigated for the first time. The degradation of 4-chlorophenol (4-CP) in the ZVI system was employed as the test oxidative reaction. MF markedly enhanced the degradation of 4-CP with the concurrent production of chlorides. The consumption of dissolved O2 by ZVI reaction was also enhanced in the presence of MF whereas the competing reaction of H2 production from proton reduction was retarded. Since the ZVI-induced oxidation is mainly driven by the in situ generated hydroxyl radicals, the production of OH radicals was monitored by the spin trap method using electron spin resonance (ESR) spectroscopy. It was confirmed that the concentration of trapped OH radicals was enhanced in the presence of MF. Since both O2 and Fe0 are paramagnetic, the diffusion of O2 onto the iron surface might be accelerated under MF. The magnetized iron can attract oxygen on itself, which makes the mass transfer process faster. As a result, the surface electrochemical reaction between Fe0 and O2 can be accelerated with the enhanced production of OH radicals. MF might retard the recombination of OH radicals as well.
Keywords:Zero valent iron  Magnetic field  Oxidation  Advanced oxidation process  OH radical
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号