首页 | 本学科首页   官方微博 | 高级检索  
     


Micromechanical characterization of thermomechanically fatigued lead-free solder joints
Authors:H. Rhee  J. P. Lucas  K. N. Subramanian
Affiliation:(1) Department of Chemical Engineering and Materials Science, Michigan State University, 2527 Engineering Building, East Lansing, MI 48824-1226, USA
Abstract:Nanoindentation testing (NIT) was used to investigate micromechanical properties of (i) as-fabricated, (ii) thermomechanically fatigued (TMF), and (iii) TMF and crept lead-free solder joints. NIT also served to generate information for a database on lead-free solder joints. Sn–Ag-based solder materials used in this study included a binary eutectic alloy, one ternary alloy, and two quaternary alloys. TMF solder joints were thermally cycled for 0, 250, 500, 1000 cycles between –15 and 150 °C. Using NIT, mechanical properties such as hardness, elastic modulus, strength trends, creep behavior, and stress exponent for power-law creep were obtained on small (nominally, 100 mgrm thick) solder joints. Because the volume of material probed by the indenter during NIT is small and highly localized, the properties observed depended strongly on the particular joint microstructure of the indent location. Scanning electron microscopy (SEM) was used to image the nanoindents and monitor deformation and fracture events that resulted from the indenting.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号