Fe2O3–TiO2 Nano‐heterostructure Photoanodes for Highly Efficient Solar Water Oxidation |
| |
Authors: | Davide Barreca,Giorgio Carraro,Alberto Gasparotto,Chiara Maccato,Michael E. A. Warwick,Kimmo Kaunisto,Cinzia Sada,Stuart Turner,Yakup Gö nü llü ,Tero‐Petri Ruoko,Laura Borgese,Elza Bontempi,Gustaaf Van Tendeloo,Helge Lemmetyinen,Sanjay Mathur |
| |
Abstract: | Harnessing solar energy for the production of clean hydrogen by photoelectrochemical water splitting represents a very attractive, but challenging approach for sustainable energy generation. In this regard, the fabrication of Fe2O3–TiO2 photoanodes is reported, showing attractive performances [≈2.0 mA cm−2 at 1.23 V vs. the reversible hydrogen electrode in 1 M NaOH] under simulated one‐sun illumination. This goal, corresponding to a tenfold photoactivity enhancement with respect to bare Fe2O3, is achieved by atomic layer deposition of TiO2 over hematite (α‐Fe2O3) nanostructures fabricated by plasma enhanced‐chemical vapor deposition and final annealing at 650 °C. The adopted approach enables an intimate Fe2O3–TiO2 coupling, resulting in an electronic interplay at the Fe2O3/TiO2 interface. The reasons for the photocurrent enhancement determined by TiO2 overlayers with increasing thickness are unraveled by a detailed chemico‐physical investigation, as well as by the study of photogenerated charge carrier dynamics. Transient absorption spectroscopy shows that the increased photoelectrochemical response of heterostructured photoanodes compared to bare hematite is due to an enhanced separation of photogenerated charge carriers and more favorable hole dynamics for water oxidation. The stable responses obtained even in simulated seawater provides a feasible route in view of the eventual large‐scale generation of renewable energy. |
| |
Keywords: | Fe2O3 nano‐heterostructures photoelectrochemistry TiO2 water splitting |
|
|