首页 | 本学科首页   官方微博 | 高级检索  
     


Shock-Wave Attenuation and Energy-Dissipation Potential of Granular Materials
Authors:Mica Grujicic  B. Pandurangan  W. C. Bell  S. Bagheri
Affiliation:(1) Department of Mechanical Engineering, Clemson University, 241 Engineering Innovation Building, Clemson, SC 29634-0921, USA
Abstract:The propagation of uniaxial-stress planar shocks in granular materials is analyzed using a conventional shock-physics approach. Within this approach, both compression shocks and decompression waves are treated as (stress, specific volume, particle velocity, mass-based internal energy density, temperature, and mass-based entropy density) propagating discontinuities. In addition, the granular material is considered as being a continuum (i.e., no mesoscale features like grains, voids, and their agglomerates are considered). However, while the granular material is treated as a (smeared-out) continuum, it is recognized that it contains a solid constituent (parent matter), and that the structurodynamic properties (i.e., Equations of State (EOS) and Hugoniot relations) of the granular material are related to its parent matter. Three characteristic shock loading regimes of granular material are considered and, in each case, an analysis is carried out to elucidate shock attenuation and energy dissipation processes. In addition, an attempt is made to identify a metric (a combination of the material parameters) which quantifies the intrinsic ability of a granular material to attenuate a shock and dissipate the energy carried by the shock. Toward that end, the response of a typical granular material to a flat-topped compressive stress pulse is analyzed in each of the three shock loading regimes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号