首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of nanostructured Cr2Nx/Cu multilayers deposited by reactive DC magnetron sputtering
Authors:K. Pagh Almtoft
Affiliation:Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, University of Aarhus, Ny Munkegade, DK-8000 Aarhus C, Denmark
Abstract:Nitride/metal nanostructured multilayers of Cr2Nx/Cu were deposited by reactive DC magnetron sputtering with various bilayer periods (2.5-30 nm) and substrate temperatures (25-400 °C). All films had a total thickness of about 470 nm and the overall chemical composition of the chromium nitride layers was close to Cr2N0.8. The deposited films were characterized by Rutherford Backscattering (RBS), low-angle X-ray reflectivity (XRR), high-angle X-ray diffraction (XRD) and transmission electron microscopy (TEM). The hardness and elastic modulus were measured by nanoindentation. The films deposited at 25 °C had a well-defined multilayer structure and the chromium nitride layers were found to crystallize into N-deficient fcc CrN0.4 with traces of hexagonal Cr2N0.8. The layers were strongly textured with fcc CrN0.4[002] and Cu[002] oriented along the growth direction — the fcc CrN0.4 and Cu grains growing with a cube-on-cube relationship. The measured hardness values were about 8 GPa, and showed no dependence on the bilayer period. Higher deposition temperatures caused the multilayer structure to degrade, and at 400 °C the films were better described as non-textured nanocomposites with the chromium nitride crystallized entirely into the equilibrium hexagonal Cr2N0.8 structure. Hardness values of the high-temperature films in the range of 4-8 GPa were measured. Multilayer films deposited at 25 °C were found to be thermally stable against post-deposition annealing at temperatures up to about 400 °C. Annealing at 500 °C caused severe structural changes — the fcc CrN0.4 phase transformed into hexagonal Cr2N0.8 accompanied by degradation of the periodic multilayer structure. The hardness decreased from the originally 8 GPa to about 5 GPa upon annealing.
Keywords:68.65.Ac   62.25.+g   81.07.-b   81.15.Cd   61.16.Bg   61.10.-i
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号