首页 | 本学科首页   官方微博 | 高级检索  
     

纳米尺度界面分层破坏行为的实验研究与分析
引用本文:闫亚宾,王晓媛.纳米尺度界面分层破坏行为的实验研究与分析[J].太赫兹科学与电子信息学报,2015,13(5):821-827.
作者姓名:闫亚宾  王晓媛
作者单位:Institute of Systems Engineering,China Academy of Engineering Physics,Mianyang Sichuan 621999,China and Institute of Systems Engineering,China Academy of Engineering Physics,Mianyang Sichuan 621999,China
基金项目:中国工程物理研究院院长基金资助项目(2014-1-097);中国工程物理研究院科学技术发展基金资助项目(2013B0302043,2013B0302044);国家自然科学基金资助项目(11302205);中国工程物理研究院总体工程研究所科技专项资助项目(2013KJZ02)
摘    要:为系统研究纳米尺度材料中的界面分层破坏行为,基于悬臂梁弯曲法,利用聚焦离子束技术,从宏观多层薄膜材料(硅/铜/氮化硅,Si/Cu/SiN)中制备出了不同类型的(直、扭转)纳米悬臂梁试样,用以开展相应的实验研究。之后,在透射电子显微镜中分别对直纳米悬臂梁和扭转纳米悬臂梁试样进行原位加载实验。在直纳米悬臂梁试样中,Cu/Si界面受到由弯矩导致的拉应力而发生分层破坏;在扭转纳米悬臂梁试样中,通过改变加载点的位置调整界面上正应力与剪应力的比值,开展了不同复合型的界面裂纹启裂实验。利用有限元法分析了临界载荷作用下Cu/Si界面上的应力场,发现所有试样的应力集中区域均在距界面端部100 nm的范围内。在直纳米悬臂梁试样中,法向应力控制着Cu/Si界面端部的裂纹启裂行为,为单一型分层破坏;在扭转纳米悬臂梁试样中,界面裂纹启裂时的临界正应力与剪应力之间存在着一个圆形准则。

关 键 词:纳米尺度  悬臂梁弯曲法  界面分层  薄膜材料  原位实验
收稿时间:2014/9/12 0:00:00
修稿时间:2014/10/29 0:00:00

Investigation on the cracking behavior of nanoscale interface delamination
YAN Yabin and WANG Xiaoyuan.Investigation on the cracking behavior of nanoscale interface delamination[J].Journal of Terahertz Science and Electronic Information Technology,2015,13(5):821-827.
Authors:YAN Yabin and WANG Xiaoyuan
Abstract:Different types of nano-cantilever specimens are fabricated from a macroscale multilayered thin film(silicon/copper/silicon nitride, Si/Cu/SiN) by using the Focused Ion Beam(FIB) based on the cantilever bending method in order to investigate the cracking behavior of nanoscale interfaces. For the single-mode interface cracking, a straight nano-cantilever specimen is fabricated. For the mixed-mode interface cracking, a double-nano-cantilever specimen is proposed to simultaneously apply bending and torque moments to the interface. All specimens are in situ loaded in the Transmission Electron Microscopy(TEM). In straight nano-cantilever specimens, the Cu/Si interface fractures due to a bending moment. In torsion nano-cantilever specimens, by changing the loading position, fracture experiments with different mode-mixities are successfully conducted. In addition, finite element analysis is employed to inquire the critical stress distribution on interface during the crack initiation, and stress concentration regions near the interface edge in all specimens are within the scale of 100 nm. In straight nano-cantilever specimens, the interfacial normal stress dominates the interface cracking, indicating a single-mode fracture. In torsion nano-cantilever specimens, the critical normal and shear stresses at crack initiation have a circular relation.
Keywords:
点击此处可从《太赫兹科学与电子信息学报》浏览原始摘要信息
点击此处可从《太赫兹科学与电子信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号