首页 | 本学科首页   官方微博 | 高级检索  
     

基于动态递归神经网络的自适应PID控制
引用本文:吴志敏,李书臣. 基于动态递归神经网络的自适应PID控制[J]. 控制工程, 2004, 11(3): 216-219
作者姓名:吴志敏  李书臣
作者单位:辽宁石油化工大学,信息工程学院,辽宁,抚顺,113001;辽宁石油化工大学,信息工程学院,辽宁,抚顺,113001
摘    要:提出一种基于动态递归神经网络的自适应PID控制方案,该控制系统由神经网络辨识器和神经网络控制器组成。辨识器采用单隐层的动态递归神经网络,网络结构为2-4-1;辨识算法为动态BP算法;控制器采用两层线性结构的神经网络,输入为系统偏差及其一阶、二阶微分,因此具有增量型PID控制结构。应用该控制系统对一非线性时变系统进行仿真研究,仿真结果表明该控制方案不仅具有良好的跟踪特性,而且对系统参数变化具有较强的鲁棒性。

关 键 词:动态递归神经网络  自适应PID控制  动态BP算法  非线性系统
文章编号:1671-7848(2004)03-0216-04
修稿时间:2003-09-05

Adaptive PID Control Based on Dynamic Recurrent Neural Network
WU Zhi-min,LI Shu-chen. Adaptive PID Control Based on Dynamic Recurrent Neural Network[J]. Control Engineering of China, 2004, 11(3): 216-219
Authors:WU Zhi-min  LI Shu-chen
Abstract:An adaptive PID control scheme based on dynamic recurrent neural network is presented. The control system is consisted of the neural network identifier and the neural network controller. The identifier is a dynamic recurrent neural network with one hidden layer, in which the structure of the network is 2-4-1. The dynamic BP algorithm is used to identify the plant on line. The controller is a neural network with two-layer linear structure. The inputs of the controller are the system deviation, the first and second differentiation, so it has a mechanism similar to the PID controller with incremental form. The control system is used to control a nonlinear time-variant system. Simulation results show that it not only has good traceability, but also has good robustness to the variation of parameters.
Keywords:dynamic recurrent neural network  adaptive PID control  dynamic BP algorithm  nonlinear systems
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号