首页 | 本学科首页   官方微博 | 高级检索  
     

基于Boosting RBF神经网络的滚动轴承故障诊断
引用本文:龙仙爱,杨顺,夏利民. 基于Boosting RBF神经网络的滚动轴承故障诊断[J]. 计算机与数字工程, 2006, 34(9): 15-19
作者姓名:龙仙爱  杨顺  夏利民
作者单位:湖南涉外经济学院计算机系,长沙,410205;中南大学信息科学与工程学院,长沙,410075;湖南涉外经济学院计算机系,长沙,410205;中南大学信息科学与工程学院,长沙,410075
基金项目:国家自然科学基金;中国科学院基金
摘    要:提出了一种新颖的基于RBF神经网络滚动轴承故障诊断方法。以滚动轴承动态信号的能量信息作为特征,RBF神经网络作为分类器进行滚动轴承故障自动分类与诊断。为了进一步提高神经网络的泛化能力和故障诊断的准确性,采用Boosting方法,进行网络集成。对七类滚动轴承进行了实验,结果表明该方法具有很好的故障诊断效果。

关 键 词:滚动轴承  故障诊断  小波包分解  Boosting方法  RBF神经网络
修稿时间:2006-02-24

Fault Testing on Rolling Bearing Based on Boosting RBF Neural Network
Long Xian'ai,Yang Shun,Xia Limin. Fault Testing on Rolling Bearing Based on Boosting RBF Neural Network[J]. Computer and Digital Engineering, 2006, 34(9): 15-19
Authors:Long Xian'ai  Yang Shun  Xia Limin
Abstract:In this paper,we present a novel method for fault testing on rolling bearing based on boosting RBF Neural network.First,frequency band is extracted from dynamic vibration signals of rolling bearing gained from acceleration meter using wavelet packets transform.Then,RBF Neural network is used to class the faults of rolling bearing.In order to improve the precision of the RBF neural network for fault testing,we use Boosting algorithm to build an integration-neural network to test rolling bearing.A set of experiments of fault testing on rolling bearing are presented.Experiment results have shown good detective performance of our newly presented method.
Keywords:rolling bearing  fault testing  wavelt packets decomposition  boosting algorithm  RBF neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号