首页 | 本学科首页   官方微博 | 高级检索  
     

基于微分演化的PSO参数选择策略
引用本文:窦全胜,周春光,张忠波,刘小华. 基于微分演化的PSO参数选择策略[J]. 计算机科学, 2007, 34(4): 228-230
作者姓名:窦全胜  周春光  张忠波  刘小华
作者单位:山东工商学院电子与信息学院,烟台264005;吉林大学计算机科学与技术学院,长春130012;吉林大学数学学院,长春130012
摘    要:粒子群优化方法(Particle Swarm Optimization,PSO)是由Kennedy和Eberhart于1995年提出的一种基于群体智能(Swarm Intelligence)的演化计算技术,用于求解各类优化问题。PSO方法通过各种参数控制粒子的运行轨迹,并对参数设置有很强的敏感性。因此,如何为PSO方法选择最优的参数是PSO方法的关键。本文提出了一种不依赖个人经验的参数选则策略,针对特定问题,将PSO方法的性能表示成参数的函数,从而将参数选择问题转变成函数优化问题。采用微分演化(Differential Evolution,DE)方法对该函数进行优化,来确定PSO的最佳参数,收到了较好的效果。

关 键 词:粒子群方法  微分演化

The Strategy of Parameters-selection for PSO Based on Differential Evolutions
DOU Quan-Sheng,ZHOU Chun-Guang,ZHANG Zhong-Bo,LIU Xiao-Hua. The Strategy of Parameters-selection for PSO Based on Differential Evolutions[J]. Computer Science, 2007, 34(4): 228-230
Authors:DOU Quan-Sheng  ZHOU Chun-Guang  ZHANG Zhong-Bo  LIU Xiao-Hua
Affiliation:1.School of Information and Electronics Engineering, Shandong Institute of Business and Technology, Yantai 264005;2.College of Computer Science and Technology, Jilin University, Changchun 130012;3.Mathematics School, Jilin University, Changchun 130012
Abstract:The Particle Swarm Optimization (PSO)method was originally designed by Kennedy and Eberhart in 1995 and has been applied successfully in various optimization problems. The PSO idea is inspired by natural concepts such as fish schooling, bird flocking and human social relations. The track of each particle is controlled by some parameters and highly sensitive to different parameters setting. So how to choice the optimum parameters is key for PSO. The strategy of parameter-selection is proposed, which dose not depend on expert experience, the performance of PSO is be regarded as a function decided by parameters of PSO in this strategy, So, the problem of parameters-selection is be transform to optimization problem, at the same time, differential evolution (DE)is be used for solving this optimization problem.
Keywords:Particle swarm optimization  Differential evolution
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号