首页 | 本学科首页   官方微博 | 高级检索  
     


Coordinated induction of MRP/GS-X pump and gamma-glutamylcysteine synthetase by heavy metals in human leukemia cells
Authors:T Ishikawa  JJ Bao  Y Yamane  K Akimaru  K Frindrich  CD Wright  MT Kuo
Affiliation:Department of Experimental Pediatrics and Section of Eucaryotic Cell Research, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
Abstract:We recently reported that GS-X pump activity, as assessed by ATP-dependent transport of the glutathione-platinum complex and leukotriene C4, and intracellular glutathione (GSH) levels were remarkably enhanced in cis-diamminedichloroplatinum(II) (cisplatin)-resistant human leukemia HL-60 cells (Ishikawa, T., Wright, C. D., and Ishizuka, H. (1994) J. Biol. Chem. 269, 29085-29093). Now, using Northern hybridization and RNase protection assay, we provide evidence that the multidrug resistance-associated protein (MRP) gene, which encodes a human GS-X pump, is expressed at higher levels in cisplatin-resistant (HL-60/R-CP) cells than in sensitive cells, whereas amplification of the MRP gene is not detected by Southern hybridization. Culturing HL-60/R-CP cells in cisplatin-free medium resulted in reduced MRP mRNA levels, but these levels could be induced to rise within 30 h by cisplatin and heavy metals such as arsenite, cadmium, and zinc. The increased levels of MRP mRNA were closely related with enhanced activities of ATP-dependent transport of leukotriene C4 (LTC4) in plasma membrane vesicles. The glutathione-platinum (GS-Pt) complex, but not cisplatin, inhibited ATP-dependent LTC4 transport, suggesting that the MRP/GS-X pump transports both LTC4 and the GS-Pt complex. Expression of gamma-glutamylcysteine synthetase in the cisplatin-resistant cells was also co-induced within 24 h in response to cisplatin exposure, resulting in a significant increase in cellular GSH level. The resistant cells exposed to cisplatin were cross-resistant to melphalan, chlorambucil, arsenite, and cadmium. These observations suggest that elevated expression of the MRP/GS-X pump and increased GSH biosynthesis together may be important factors in the cellular metabolism and disposition of cisplatin, alkylating agents, and heavy metals.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号