首页 | 本学科首页   官方微博 | 高级检索  
     

基于人工智能的钛合金热变形工艺参数优化
引用本文:李萍,薛克敏. 基于人工智能的钛合金热变形工艺参数优化[J]. 中国有色金属学报, 2006, 16(7): 1202-1206
作者姓名:李萍  薛克敏
作者单位:合肥工业大学,材料科学与工程学院,合肥,230009
基金项目:国家高技术研究发展计划(863计划);安徽省优秀青年科研项目
摘    要:在深入分析热变形工艺参数对Ti-15-3合金显微组织及成形载荷的影响的基础上,以变形温度、变形程度和变形速率等热变形工艺参数作为设计变量,以显微组织和成形力的最佳综合为目标,建立了该合金热塑性成形工艺参数的多目标优化数学模型。以显微组织参数和成形力的人工神经网络预测模型作为优化算法的知识源,将人工神经网络与修正的遗传算法相结合,对Ti-15-3合金的热塑性成形工艺参数进行优化。结果表明,提出的修正的遗传算法是有效的,采用将其与人工神经网络相结合的方法对钛合金的热塑性成形工艺参数进行优化是可行的。

关 键 词:Ti-5-3合金  优化  修正的遗传算法  人工神经网络  热变形参数
文章编号:1004-0609(2006)07-1202-05
收稿时间:2005-12-23
修稿时间:2006-05-08

Optimization of hot deformation process for titanium based on artificial intelligence
LI Ping,XUE Ke-min. Optimization of hot deformation process for titanium based on artificial intelligence[J]. The Chinese Journal of Nonferrous Metals, 2006, 16(7): 1202-1206
Authors:LI Ping  XUE Ke-min
Affiliation:School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
Abstract:The systematic analyses of the effects of hot deformation process parameters on microstructure and load of Ti-15-3 alloy were accomplished.Based on the results,a multi-objection optimization model was established for hot deformation process of Ti-15-3 alloy.In the model,temperature,strain and strain rate are treated as design variables and the objective is to obtain uniform fine-grain microstructures under the smaller load.Optimization of hot deformation process parameters for Ti-15-3 alloy was conducted by introducing artificial neural network prediction models of microstructures and forming load into a modified genetic algorithm.The results indicate that the modified genetic algorithm is effective and the optimization method based on artificial neural network and the modified genetic algorithm is feasible.
Keywords:Ti-15-3 alloy  optimization  modified genetic algorithm  artificial neural network  hot deformation parameters
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号