首页 | 本学科首页   官方微博 | 高级检索  
     


Optimization and limitations of known DEMO divertor concepts
Authors:Jens Reiser  Michael Rieth
Affiliation:Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe, Germany
Abstract:In this work we will introduce and discuss improvements for two types of DEMO divertors based on known designs: (i) gas cooled designs and (ii) liquid coolant concepts. In a first step, the advantages and disadvantages of gas cooling as well as the necessity of a jet impingement to increase the heat transfer coefficients will be discussed. Further discussion deals with the pros and cons of liquid coolant concepts, like for example, liquid metal or water cooling.Thereafter, we will present two rather contrary DEMO divertor concepts which are based on today's knowledge on refractory materials science, fabrication and joining technology. The first improved concept uses water flowing through steel pipes, typically made of Eurofer steel. It is well known that using Eurofer at low temperatures is critical due to its severe embrittlement under neutron irradiation. Here we make a proposal how it could be possible to use the Eurofer steel anyway: the solution could consist in a limited operation period followed by an annealing cycle at 550 °C for a few hours during any maintenance shut down phases. The second design is based on the known helium cooling concept using jet impingement. Drawbacks of the actual He-cooled divertor design are small scale parts as well as the necessary high helium inlet temperature of about 600–800 °C which leads to the question: How can we deal with such high helium temperatures? This paper shows a solution for large scale components as well as a new thermal management for the helium outlet gas that we call ‘cooling of the coolant’.Both concepts are discussed in terms of materials selection due to material limits and joining technology with a special focus on the material issue using already existing and available materials.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号