首页 | 本学科首页   官方微博 | 高级检索  
     


Generation of uniform tetrapod-shaped zincoxide nanoparticles by gas-phase reaction with using flow restrictor
Authors:Hisashi Yamamoto  Yoshio Otani  Takafumi Seto  Pat Nartpochananon  Tawatchai Charinpanitkul
Affiliation:1. Department of Chemical and Material Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan;2. Center of Excellence in Particle Technology, Faculty of Engineering, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand
Abstract:Tetrapod-shaped ZnO particles are generated via gas-phase reaction of Zn vapor and oxygen in air, where they undergo homogeneous nucleation from supersaturated ZnO vapor and successive growth by surface reaction. It was found that a simple device for flow restrictor is effective in making ZnO particles of terapod-shape by leaving sufficient amounts of unreacted Zn vapor with the embryos of ZnO. In the absence of the flow restrictor, only spherical particles are formed because the oxidation reaction takes place immediately after mixing and unreacted Zn vapor does not remain for the subsequent crystal growth. The Zn vapor concentration distribution, oxygen concentration distribution, temperature, gas velocity and reaction rate in the reactor were analyzed by using a conventional computational fluid dynamic simulation package. The simulation revealed that the flow restrictor does not enhance mixing between Zn vapor and air but suppresses the mixing and reduces the residence time in the reactor so that sufficient amounts of unreacted Zn vapor remain downstream of the flow restrictor, allowing ZnO particles to grow in tetrapod-shape by abnormal crystal growth.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号