首页 | 本学科首页   官方微博 | 高级检索  
     


Module of lithium divertor for KTM tokamak
Authors:I. Lyublinski  A. Vertkov  V. Evtikhin  V. Balakirev  D. Ionov  M. Zharkov  I. Tazhibayeva  S. Mirnov  S. Khomiakov  D. Mitin  G. Mazzitelli  P. Agostini
Affiliation:1. FSUE “Red Star”, Moscow, Russian Federation;2. IAE NNC RK, Kurchatov, Kazakhstan;3. TRINITI, Troitsk, Moscow Region, Russian Federation;4. OJSC Dollezhal Institute, Moscow, Russian Federation;5. ENEA RC Frascati, Italy;6. ENEA RC Brasimone, Italy
Abstract:Activity on projects of ITER and DEMO reactors has shown that solution of problems of divertor target plates and other plasma facing elements (PFEs) based on the solid plasma facing materials cause serious difficulties. Problems of PFE degradation, tritium accumulation and plasma pollution can be overcome by the use of liquid lithium–metal with low Z. Application of lithium will allow to create a self-renewal and MHD stable liquid metal surface of the in-vessel devices possessing practically unlimited service life; to reduce power flux due to intensive re-irradiation on lithium atoms in plasma periphery that will essentially facilitate a problem of heat removal from PFE; to reduce Zeff of plasma to minimally possible level close to 1; to exclude tritium accumulation, that is provided with absence of dust products and an opportunity of the active control of the tritium contents in liquid lithium. Realization of these advantages is based on use of so-called lithium capillary-porous system (CPS) – new material in which liquid lithium fill a solid matrix from porous material. The progress in development of lithium technology and also activity in lithium experiments in the tokamaks TFTR, T-11M, T-10, FTU, NSTX, HT-7 and stellarator TJ II permits of solving the problems in development of steady-state operating lithium divertor module project for Kazakhstan tokamak KTM. At present the lithium divertor module for KTM tokamak is under development in the framework of ISTC project # K-1561. Initial heating up to 200 °C and lithium surface temperature stabilization during plasma interaction in the range of 350–550 °C will be provided by external system for thermal stabilization due to circulation of the Na–K heat transfer media. Lithium filled tungsten felt is offered as the base plasma facing material of divertor. Development, creation and experimental research of lithium divertor model for KTM will allow to solve existing problems and to fulfill the basic approaches to designing of lithium divertor and in-vessel elements of new fusion reactor generation, to investigate plasma physics aspects of lithium influence, to develop technology of work with lithium in tokamak conditions. Results of this project addresses to the progress in the field of fusion neutrons source and fusion energy source creation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号