首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波变换和余弦变换的Fisher脸识别
引用本文:戴鸿宇. 基于小波变换和余弦变换的Fisher脸识别[J]. 黑龙江电子技术, 2014, 0(4): 180-184
作者姓名:戴鸿宇
作者单位:河海大学计算机及信息学院,南京211100
摘    要:结合几种现有的人脸识别特征提取算法,先对人脸图像进行小波分解去噪;然后通过离散余弦变换对低频分量作进一步特征提取和压缩,保留人脸图像中对光照、姿态、表情变化不敏感的识别信息;接着利用PCA和LDA相结合得到最终的识别特征,最后采用欧式距离和最近邻分类器识别人脸。实验采用ORL标准人脸库验证了这种组合的有效性。

关 键 词:人脸识别  离散小波变换  离散余弦变换  主成分分析  线性判别分析

Fisher face recognition based on wavelet transform and cosine transform
DAI Hong-yu. Fisher face recognition based on wavelet transform and cosine transform[J]. , 2014, 0(4): 180-184
Authors:DAI Hong-yu
Affiliation:DAI Hong-yu ( School of Computer Selenee and Technology, Hohai University, Nanjing 211100, China)
Abstract:This article combines several existing feature extraction algorithms for face recognition. Firstly, face images are decomposed by using wavelet transform, in which some noises have been removed from the images. Then, discrete cosine transform is used on low frequency components to get further feature extraction and compression, which is not sensitive to light, gesture or facial expression. After that, a combination of PCA and LDA is conducted to obtain final face features. Finally, Euclidean distance and the minimum distance classifier are used to perform face recognition. The simulation experiments based on ORL show a better recognition rate in this combination.
Keywords:face recognition  DWT  DCT  PCA  LDA
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号