摘 要: | 声带准周期振动的缺失,使得汉语耳语音成为了一种特殊的发音模式,也使得耳语声调无法用基音周期表征。目前用于语音识别和声纹识别的常规语音特征,包含声调信息较少,所以在声调识别实验中很难获得良好的效果。本文提出一种新的特征参数来模拟正常语音的基频声调轨迹,即以人的听觉特性为出发点,研究人的声调敏感Bark频带,发现部分扩散Bark谱能量归一化比例拟合曲线,能够呈现出类似正常语音的基频轨迹,这说明在某些方面该轨迹或多或少包含了耳语音的声调信息。在以该轨迹和语音短时能量曲线为特征,以神经网络为模型的耳语声调识别实验中获得了较高的识别正确率,汉语四声的总体识别正确率高达78%,这也为对耳语音的进一步处理提供了很多有力依据。
|